Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Virus Genes ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587722

RESUMO

SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication. To investigate whether there are differences in the spectrum and frequency of mutations between parental SARS-CoV-2 and Omicron, we here applied this model to Omicron. At 30 days after infection, we found that the virus was present at high titers in the tumor tissues and had developed several rare sporadic mutations, mainly in ORF1ab with additional minor spike protein mutations. Many of the mutant isolates had higher replicative activity in Calu-3 cells compared with the original SARS-CoV-2 Omicron virus, suggesting that the novel mutations contributed to increased viral replication. Serial propagation of SARS-CoV-2 Omicron in cultured Calu-3 cells resulted in several rare sporadic mutations in various viral proteins with no mutations in the spike protein. Therefore, the genome of SARS-CoV-2 Omicron seems largely stable compared with that of the parental SARS-CoV-2 during extended replication in Calu-3 cells and xenograft model. The sporadic mutations and modified growth properties observed in Omicron might explain the emergence of Omicron sublineages. However, we cannot exclude the possibility of some differences in natural infection.

2.
J Med Virol ; 96(2): e29459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345153

RESUMO

We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Xenoenxertos , SARS-CoV-2/genética , Encéfalo
4.
Sci Immunol ; 9(91): eade6132, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241400

RESUMO

Here, we examine peripheral blood memory T cell responses against the SARS-CoV-2 BA.4/BA.5 variant spike among vaccinated individuals with or without Omicron breakthrough infections. We provide evidence supporting a lack of original antigenic sin in CD8+ T cell responses targeting the spike. We show that BNT162b2-induced memory T cells respond to the BA.4/BA.5 spike. Among individuals with BA.1/BA.2 breakthrough infections, IFN-γ-producing CD8+ T cell responses against the BA.4/BA.5 spike increased. In a subgroup with BA.2 breakthrough infections, IFN-γ-producing CD8+ T cell responses against the BA.2-mutated spike region increased and correlated directly with responses against the BA.4/BA.5 spike, indicating that BA.2 spike-specific CD8+ T cells elicited by BA.2 breakthrough infection cross-react with the BA.4/BA.5 spike. We identified CD8+ T cell epitope peptides that are present in the spike of BA.2 and BA.4/BA.5 but not the original spike. These peptides are fully conserved in the spike of now-dominant XBB lineages. Our study shows that breakthrough infection by early Omicron subvariants elicits CD8+ T cell responses that recognize epitopes within the spike of newly emerging subvariants.


Assuntos
Vacina BNT162 , Linfócitos T CD8-Positivos , Humanos , Infecções Irruptivas , Epitopos de Linfócito T , Peptídeos
5.
Front Cell Infect Microbiol ; 13: 1280686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029235

RESUMO

Introduction: The spectrum of SARS-CoV-2 mutations have increased over time, resulting in the emergence of several variants of concern. Persistent infection is assumed to be involved in the evolution of the variants. Calu-3 human lung cancer cells persistently grow without apoptosis and release low virus titers after infection. Methods: We established a novel in vivo long-term replication model using xenografts of Calu-3 human lung cancer cells in immunodeficient mice. Virus replication in the tumor was monitored for 30 days and occurrence of mutations in the viral genome was determined by whole-genome deep sequencing. Viral isolates with mutations were selected after plaque forming assays and their properties were determined in cells and in K18-hACE2 mice. Results: After infection with parental SARS-CoV-2, viruses were found in the tumor tissues for up to 30 days and acquired various mutations, predominantly in the spike (S) protein, some of which increased while others fluctuated for 30 days. Three viral isolates with different combination of mutations produced higher virus titers than the parental virus in Calu-3 cells without cytopathic effects. In K18-hACE2 mice, the variants were less lethal than the parental virus. Infection with each variant induced production of cross-reactive antibodies to the receptor binding domain of parental SARS-CoV-2 S protein and provided protective immunity against subsequent challenge with parental virus. Discussion: These results suggest that most of the SARS-CoV-2 variants acquired mutations promoting host adaptation in the Calu-3 xenograft mice. This model can be used in the future to further study SARS-CoV-2 variants upon long-term replication in vivo.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
iScience ; 26(9): 107689, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680469

RESUMO

SARS-CoV-2 variants have continuously emerged globally, including in South Korea. To characterize the molecular evolution of SARS-CoV-2 in South Korea, we performed phylogenetic and genomic recombination analyses using more than 12,000 complete genome sequences collected until October 2022. The variants in South Korea originated from globally identified variants of concern and harbored genetic clade-common and clade-specific amino acid mutations mainly around the N-terminal domain (NTD) or receptor binding domain (RBD) in the spike protein. Several point mutation residues in key antigenic sites were under positive selection persistently with changing genetic clades of SARS-CoV-2. Furthermore, we detected 17 potential genomic recombinants and 76.4% (13/17) retained the mosaic NTD or RBD genome. Our results suggest that point mutations and genomic recombination in the spike contributed to the molecular evolution of SARS-CoV-2 in South Korea, which will form an integral part of global prevention and control measures against SARS-CoV-2.

9.
Vaccine ; 41(17): 2769-2772, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37003909

RESUMO

Previous studies have shown that fully vaccinated patients with SARS-CoV-2 Delta variants has shorter viable viral shedding period compared to unvaccinated or partially vaccinated patients. However, data about effects of vaccination against the viable viral shedding period in patients with SARS-CoV-2 Omicron variants were limited. We compared the viable viral shedding period of SARS-CoV-2 omicron variant regard to vaccination status. Saliva samples were obtained daily from patients with SARS-CoV-2 Omicron variant, and genomic assessments and virus culture was performed to those samples. We found no difference in viable viral shedding period between fully vaccinated and not or partially vaccinated, nor between 1st boostered vs non-boostered patients with SARS-CoV-2 Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Eliminação de Partículas Virais , Estudos Prospectivos , COVID-19/prevenção & controle , Vacinação
10.
Front Immunol ; 14: 1131229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960070

RESUMO

Background: Whether or not a single-dose Ad26.COV2.S prime and boost vaccination induces sufficient immunity is unclear. Concerns about the increased risk of breakthrough infections in the Ad26.COV2.S-primed population have also been raised. Methods: A prospective cohort study was conducted. Participants included healthy adults who were Ad26.COV2.S primed and scheduled to receive a booster vaccination with BNT162b2, mRNA-1273, or Ad26.COV2.S. The IgG anti-receptor binding domain (RBD) antibody titers, neutralizing antibody (NAb) titers (against wild type [WT] and Omicron [BA.1 and BA.5]), and Spike-specific interferon-γ responses of the participants were estimated at baseline, 3-4 weeks, 3 months, and 6 months after booster vaccination. Results: A total of 89 participants were recruited (26 boosted with BNT162b2, 57 with mRNA-1273, and 7 with Ad26.COV2.S). The IgG anti-RBD antibody titers of all participants were significantly higher at 6 months post-vaccination than at baseline. The NAb titers against WT at 3 months post-vaccination were 359, 258, and 166 in the participants from the BNT162b2-, mRNA-1273-, and Ad26.COV2.S-boosted groups, respectively. Compared with those against WT, the NAb titers against BA.1/BA.5 were lower by 23.9/10.9-, 16.6/7.4-, and 13.8/7.2-fold in the participants from the BNT162b2-, mRNA-1273-, and Ad26.COV2.S-boosted groups, respectively, at 3 months post-vaccination. Notably, the NAb titers against BA.1 were not boosted after Ad26.COV2.S vaccination. Breakthrough infections occurred in 53.8%, 62.5%, and 42.9% of the participants from the BNT162b2-, mRNA-1273-, and Ad26.COV2.S-boosted groups, respectively. No significant difference in humoral and cellular immunity was found between individuals with and without SARS-CoV-2 breakthrough infections. Conclusion: Booster vaccination elicited acceptable humoral and cellular immune responses in Ad26.COV2.S-primed individuals. However, the neutralizing activities against Omicron subvariants were negligible, and breakthrough infection rates were remarkably high at 3 months post-booster vaccination, irrespective of the vaccine type. A booster dose of a vaccine containing the Omicron variant antigen would be required.


Assuntos
Ad26COVS1 , COVID-19 , Adulto , Humanos , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Infecções Irruptivas , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunoglobulina G
12.
J Med Virol ; 95(1): e28369, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458559

RESUMO

There are limited data comparing the transmission rates and kinetics of viable virus shedding of the Omicron variant to those of the Delta variant. We compared these rates in hospitalized patients infected with Delta and Omicron variants. We prospectively enrolled adult patients with COVID-19 admitted to a tertiary care hospital in South Korea between September 2021 and May 2022. Secondary attack rates were calculated by epidemiologic investigation, and daily saliva samples were collected to evaluate viral shedding kinetics. Genomic and subgenomic SARS-CoV-2 RNA was measured by PCR, and virus culture was performed from daily saliva samples. A total of 88 patients with COVID-19 who agreed to daily sampling and were interviewed, were included. Of the 88 patients, 48 (59%) were infected with Delta, and 34 (41%) with Omicron; a further 5 patients gave undetectable or inconclusive RNA PCR results and 1 was suspected of being coinfected with both variants. Omicron group had a higher secondary attack rate (31% [38/124] vs. 7% [34/456], p < 0.001). Survival analysis revealed that shorter viable virus shedding period was observed in Omicron variant compared with Delta variant (median 4, IQR [1-7], vs. 8.5 days, IQR [5-12 days], p < 0.001). Multivariable analysis revealed that moderate-to-critical disease severity (HR: 1.96), and immunocompromised status (HR: 2.17) were independent predictors of prolonged viral shedding, whereas completion of initial vaccine series or first booster-vaccinated status (HR: 0.49), and Omicron infection (HR: 0.44) were independently associated with shorter viable virus shedding. Patients with Omicron infections had higher transmission rates but shorter periods of transmissible virus shedding than those with Delta infections.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , COVID-19/epidemiologia , Incidência , Estudos Prospectivos , RNA Viral/genética , SARS-CoV-2/genética , Eliminação de Partículas Virais , RNA Subgenômico/genética
13.
Immune Netw ; 23(6): e43, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38188597

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster. Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.

14.
Front Med (Lausanne) ; 9: 922431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341265

RESUMO

Background: Isolation of COVID-19 patients is a crucial infection control measure to prevent further SARS-CoV-2 transmission, but determining an appropriate timing to end the COVID-19 isolation is a challenging. We evaluated the performance of the self-test rapid antigen test (RAT) as a potential proxy to terminate the isolation of COVID-19 patients. Materials and methods: Symptomatic COVID-19 patients were enrolled who were admitted to a regional community treatment center (CTC) in Seoul (South Korea). Self-test RAT and the collection of saliva samples were performed by the patients, on a daily basis, until patient discharge. Cell culture and subgenomic RNA detection were performed on saliva samples. Results: A total of 138 pairs of saliva samples and corresponding RAT results were collected from 34 COVID-19 patients. Positivity of RAT and cell culture was 27% (37/138) and 12% (16/138), respectively. Of the 16 culture-positive saliva samples, seven (43.8%) corresponding RAT results were positive. Using cell culture as the reference standard, the overall percent agreement, percent positive agreement, and percent negative agreement of RAT were 71% (95% CI, 63-78), 26% (95% CI, 12-42), and 82% (95% CI, 76-87), respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of the RAT for predicting culture results were 44% (95% CI, 20-70), 75% (95% CI, 66-82), 18% (95% CI, 8-34), and 91% (95% CI, 84-96), respectively. Conclusion: About half of the patients who were SARS-CoV-2 positive based upon cell culture results gave negative RAT results. However, the remaining positive culture cases were detected by RAT, and RAT showed relatively high negative predictive value for viable viral shedding.

15.
J Clin Virol ; 157: 105319, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223658

RESUMO

BACKGROUND: The Centers for Disease Control and Prevention (CDC) recommends 5-10 days of isolation for patients with COVID-19, depending on symptom duration and severity. However, in clinical practice, an individualized approach is required. We thus developed a clinical scoring system to predict viable viral shedding. METHODS: We prospectively enrolled adult patients with SARS-CoV-2 infection admitted to a hospital or community isolation facility between February 2020 and January 2022. Daily dense respiratory samples were obtained, and genomic RNA viral load assessment and viral culture were performed. Clinical predictors of negative viral culture results were identified using survival analysis and multivariable analysis. RESULTS: Among 612 samples from 121 patients including 11 immunocompromised patients (5 organ transplant recipients, 5 with hematologic malignancy, and 1 receiving immunosuppressive agents) with varying severity, 154 (25%) revealed positive viral culture results. Multivariable analysis identified symptom onset day, viral copy number, disease severity, organ transplant recipient, and vaccination status as independent predictors of culture-negative rate. We developed a 4-factor predictive model based on viral copy number (-3 to 3 points), disease severity (1 point for moderate to critical disease), organ transplant recipient (2 points), and vaccination status (-2 points for fully vaccinated). Predicted culture-negative rates were calculated through the symptom onset day and the score of the day the sample was collected. CONCLUSIONS: Our clinical scoring system can provide the objective probability of a culture-negative state in a patient with COVID-19 and is potentially useful for implementing personalized de-isolation policies beyond the simple symptom-based isolation strategy.


Assuntos
COVID-19 , Estados Unidos , Adulto , Humanos , Eliminação de Partículas Virais , SARS-CoV-2 , Teste para COVID-19 , Carga Viral
16.
J Korean Med Sci ; 37(39): e289, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217571

RESUMO

BACKGROUND: Patients with hematologic malignancies may produce replication-competent virus beyond 20 days of SARS-CoV-2 infection. However, data regarding the transmission of SARS-CoV-2 from patients with prolonged viral shedding is limited. METHODS: In May 2022, four additional cases of COVID-19 were reported in a hematologic ward at a tertiary care hospital in South Korea, after an 8-week isolation of a patient with prolonged viral shedding. We performed whole-genome sequencing (WGS) of SARS-CoV-2 to evaluate the possibility of post-isolation transmission from this prolonged viral shedding. RESULTS: A patient (case 1) with acute myeloid leukemia was released from isolation 54 days after the diagnosis of COVID-19 based on rising Ct value of up to 29.3, and moved to a six-patient room. On days 10 and 11 post-isolation, his doctor (case 2) and 2 patients who were his roommates (case 3, 4) had positive SARS-CoV-2 PCR results. Additionally, 16 days post-isolation, another patient (case 5) in a remote room had positive SARS-CoV-2 PCR result. All the three patients were hospitalized for ≥ 14 days when they were diagnosed with SARS-CoV-2 infection. Except for case 3, the remaining 4 cases were available for WGS, which revealed that case 1 exhibited a 7 nucleotides difference in comparison to cases 4 and 5 and case 2 displayed a 20 nucleotides difference compared with case 1, while sequences of cases 4 and 5 were identical. CONCLUSIONS: Despite the possibility of transmission from the patient with prolonged viral shedding, no evidence of the transmission of SARS-CoV-2 from the patient with prolonged positive RT-PCR using WGS was found.


Assuntos
COVID-19 , COVID-19/diagnóstico , Hospitais , Humanos , Nucleotídeos , RNA Viral/genética , SARS-CoV-2/genética , Eliminação de Partículas Virais
18.
Clin Lab ; 68(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125147

RESUMO

BACKGROUND: To assess protective immunity among a general population against severe acute respiratory syndrome coronavirus 2, the correlation of the commercially available solid-phase assay (SPA) for SARS-CoV-2 IgG with a neutralization assay must be investigated. METHODS: Both the neutralization assay and SPA were performed on samples of 143 recovered coronavirus disease 2019 (COVID-19) patients. SARS-CoV-2 IgG was measured using two SPAs for the chemiluminescence immunoassay principle with different target proteins: nucleocapsid and spike protein (Architect i2000SR [Abbott] and Liaison XL [DiaSorin], respectively). The plaque reduction neutralization test (PRNT) was conducted to obtain titers for the neutralizing antibody. RESULTS: All patients had PRNT titers ranging from 10 to 2,560. Spike Ab SPA had greater sensitivity than nucleocapsid Ab SPA (81.1% [116/143] and 70.6% [101/143], respectively, p = 0.003). The values measured for both SPAs had a positive correlation with the PRNT titers (both R = 0.77, p < 0.001). To predict a high PRNT titer (≥ 160), cutoff values of two SPAs were adjusted based on receiver-operating characteristics curve analysis. The nucleocapsid Ab SPA (cutoff index of 4.17) attained 90.3% sensitivity and 75.9% specificity, whereas the spike Ab SPA (cutoff value of 109 unit/mL) attained 87.1% sensitivity and 89.3% specificity. Therefore, the spike Ab SPA had greater specificity than the nucleocapsid Ab SPA (p = 0.003). CONCLUSIONS: The qualitative SPA for nucleocapsid Ab, as well as the quantitative SPA for spike Ab, had a modest positive correlation with the neutralization assay. However, spike Ab SPA was more suitable for neutralizing capacity.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
19.
Sci Rep ; 12(1): 13491, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931794

RESUMO

Knowledge of the factors affecting the difference in kinetics and longevity of the neutralizing antibody (nAb) response to SARS-CoV-2 is necessary to properly prioritize vaccination. In the present study, from March to December 2020, of the 143 patients who recovered from COVID-19, 87 underwent study visits scheduled every 3 months. Patient demographics and blood samples were collected followed by a plaque reduction neutralization test to analyze nAb titers. A linear mixed model was used to compare the effects of sex, age, and disease severity over time. Results demonstrated a gradual reduction in nAb titers over time with a significant decrease from 6 to 9 months post-COVID-19 infection (p < 0.001). In time-to-sex, age, and disease severity comparisons, reduction in nAb titers over time was unaffected by sex (p = 0.167), age (p = 0.188), or disease severity (p = 0.081). Additionally, the nAb titer was 1.46 times significantly higher in those aged ≥ 50 years than in those aged < 50 years (p = 0.036) irrespective of time Moreover, the nAb titer was 2.41 times higher in the moderate or above than that in the below moderate disease severity group (p < 0.001). However, no significant differences were observed in terms of sex (p = 0.300). Given the reduction in nAbs over time, maintaining protective neutralizing antibodies regardless of sex, age, or disease severity is needed.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Índice de Gravidade de Doença
20.
Science ; 377(6609): 960-966, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881005

RESUMO

Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.


Assuntos
COVID-19 , Pandemias , SARS-CoV-2 , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Simulação por Computador , Variação Genética , Genômica/métodos , Humanos , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...